=
=

P

s o o NS§;16284

The Testability of Ada Programs

David Auty, SofTech, Inc.
Norman Cohen, SofTech, Inc.

Software development for NASA's space station poses a significant
challenge; considered the most difficult challenge by some. The difficulty is
the magnitude and complexity of the required software. With the requirements
for remote contrcl and communications, software will lie at the heart of many
essential and complex systems within the station. The combined requirements

for highly-reliable systems exceed any sof.ware development effort yet
attempted.

NASA's previous experience with software development centers on the
assembly code and the code in the high-level language HAL/S, developed for the
space shuttle. Within the development of that software there was heavy
reliance on careful testing and thorough multi-level checkout. Within the
HAL/S development environment, the checkout procedures could depend on the
stable characteristics of and limitations on program behavior inherent in the
language. This paper addresses the concerns raised by consideration of the
requirements for testing and checkout procedures for the space station
software. In particular it addresses the use of Ada in the development of
widely distributed yet closely coordinated processing.

This analysis is done in two contexts. First, an evaluation of the
language is presented, discussing how the rules and features of the Ada
language effect the testability of software written in it. Second, some
general techniques in software development which can augment testing in the
development of reliable software and some specific recommendations for tools
and appropriate compilation are presented.

This paper is a summary of a full report prepared at the conclusion of an
extended study effort on this topic. It therefore does not go into detail in
elaborating each point of interest. An attempt has been made to cover the
breadth of the report and present its key findings.

Evaluation of Ada

We begin by discussing how a programming language can be evaluated for
testability. For our purposes, testability is the ability to determine, by
test execution of software, whether the software will function correctly in
operational use. Testability measures the extent to which it is possible to
construct tests such that the behavior of the software on those tests reflects

8-1-501

o

/

)5 7027
7 £
/:2// y &L w/ 53

the behavior of system when deployed. MAmong the issues related to testability
are the ease of generating comprehensive test cases, the predictability of
resource utilization under all circumstances and the deterministic

repeatability of processing sequences.

This definition applies principally to the developed program, but it can
be extended to apply to the language used to express that program. A
programming language supports testability to the extent that it facilitates the
writing of testable software. We have identified the following attributes of a
programming language which facilitate testability:

- support for modular decomposition (i.e., supporting the testing of units
independently of their use in the system),

- existence of interface specifications constructs which are clear and
comprehensive

- complete type and program unit specifications allowing comprehensive
consistency checking during program compilation,

-~ well-defined run~time error handling,

- predictable resource allocation and utilization,

~ support for the writing of test drivers and hardware stimuli simulation,
and

- support for the creation of high-level abstractions.

With these evaluation criteria, we considered the following aspects of the
Ada language:

- Data Types and Subtypes,

- Separate Compilation and Packages,
- Subprogram Definition,

~ Generic Units,

- Exceptions,

- Concurrent Processing and

- Storage Management.

Each aspect was considered from the viewpoints of conformance with
evaluation criteria, risks to testability and recommendations for reducing
those risks.

Fig. 1 shows an evaluation criteria versus features matrix showing the
extent of support of the Ada language for testability. The matrix shows where
aspects of the language support the evaluation criteria, independent of the
possible risks within the same feature area. In general, the strong typing
rules of the language and the concept of separate specification and progranm
unit bodies provide excellent support for testability.

B.1.5.2

e :41“‘5&’:

gy,

Data Types and Subtypes
Separate Compilation and Packages

)
)
(' ! Subprograms
- H ' ! Generic Units
H ' H) Exceptions
1 } ! ! H Concurrent Processing
i i ' : ' ! Storage Management
: -+---*-——+—--+--—+-—-+——-+-:
Modular Decomposition P 0 0! 0} @ | 1 e '
Clear & Comprehensive 10 0! 06} @) 0] 0 0]
interface specifications | .} .} .V o} oV b o
Compile time consistency P e 0 0} @) ! ! H
checking T T O T T T
Well-defined run-time N ! H el e e |
error handling T e e T R S
Predictable resource use P 0 0! ' Vel e
and allocation R e T e e T
Support for test and test ! el e 6 e e | i
driver programs | T e
Support for creation of Ve 0 0 0 0! 0! @
]]]]] 1 (] |
])]]]] t L}

high level abstractions

Fig. 1, Evaluation Criteria vs. Feature Matrix

Two areas of particular interest are represented as only half-filled
circles in the evaluaticn matrix. These represent qualified support for the
evaluation criteria. In the case of exception management, the rules for the
raising of exceptions, including user specified raise statements, and for
exception propagation, allow for a very concise treatment of exception
processing. Thus, when properly documented, exception processing as defined in
the language is an important part of a module's interface, supporting the
requirement for clear and comprehensive interface specifications. Because it
is dependent on optionally included comments, however, this can be considered
only gqualified support for the evaluation criteria.

The second half-filled circle is under generic units. This is a similar
situation as for exceptions. The rules for formal generic parameter
specification and for generic instantiations allow for a clear and concise
specification of the units interface. However, as will be discussed under
risks, there are secondary aspects of actual parameters (which we term second
order properties) which are not documented, such as functional requirements on
actual procedure parameters. Because these secondary aspects can be critical,
yet possibly undocumented, support in this area is also qualified.

B.1.5.3

Testability Risks

In the evaluation of the Ada language features, several risks to
testability as well as the above benefits were identified. These risks fall
into two broad categories of inefficiency and hidden interfaces, plus one
additional concern without such convenient categorization.

The concern over efficiency is based on a simple assumption that features
which fail to provide adequate efficiency will not be used in many
applications. The resulting program which may be more or less convoluted in
its avoidance of this feature will certainly not have benefited in its
testability. Although processing capabilities and memory sizes are increasing
dramatically, the requirements to surpass the increased capabilities are
already being considered. Concerns over efficiency in Ada fall into three
areas:

-~ excessively expensive run-time checks,
- 1inappropriate or undirected instantiation of generic units, and

- excessively expensive tasking architecture.

These can be collected under the general concern of inefficiency in support of
high-level abstractions.

The second broad concern is that of hidden interfaces. Despite the strong
support in the language for detailing important interface information, several
possibilities for hidden interfaces exist. Hidden interfaces exist wherever
interactions or dependencies exist which are not part of the specification or
declarations of the unit. These can be classified as being due to:

- global variables (side effects of procedure and function calls, contention
over access between separate tasks),

- the raising and propagation of exceptions,

- dynamic storage utilization,

- dynamically determined timing behavior, and

- second order properties (e.g. functional requirements on actual procedure
parameters) for generic instantiations.

An example of second order properties would be the case of a generic
sorting procedure. A typical implementation will have the type of the objects
ng oo genoric parametar, requiring o seootd parametor tu be o funotion which can
compare values of that type and return a boolean value on the basis of the
condition "less than". The second order property of the actual function used
during instantiation is that it must return a proper ordering of all values of
the type. In fact, it is conceivable that the sorting routine may never reach

B.1.5.4

an exit point if the function does not have this property. Yet this property
is not required in any way by the language during instantiation.

e last risk for testability is the general non-determinism of tasking
interactions. While not so much a fault of the language, as asynchronous
concurrent processing is inherently non-deterministic, the presence of tasking
in an Ada program can complicate the testing of that program.

Recommendations to Reduce Risk

In response to the identification of these risks, several recommendations
for reducing the risk were made. These fall under the general headings of:

- requirements for appropriate development practices and training,
- requirements for appropriate tools, and
- requirements for appropriate compilation.

The principle behind the requirements for appropriate development
practices and tools is based on the recognition that their use can help assure
reliable software where testing is difficult. Testing practices can be
augmented by the use during development of proof techniques, static program
analysis and runtime monitoring. Throughout the development process,
verification techniques can be used to insure principles identified and
verified early in the development are held true through implementation.

For appropriate programming guidelines and training, the following
suggestions were made:

- For numeric processing, training should include a discussion of digital
computation algorithms and their interaction with underlying numeric
precision in determining the accuracy of the computed value. This is
necessary to put the rules for numeric precision of the language in proper
context.

- Programming Guidelines should be established for:

- the judicious use of suppress and inline pragmas to provide
efficiency as necessary,

- the avoidance of global variables and hidden side effects,

- the hiding of persistent variables in package bodies (and therefore
private to the package), and

- the use of out parameters from procedures over unconstrained
composite results from functions (allowing better storage
utilization).

B.1.5.5

= Training should emphasize:
- concurrent programming concepts and practices
- the concept and significance of second order properties of generic
parameters

- Standards (with enforcement) should be established for:
- the documentation and use of exceptions
-~ storage utilization practices

A more reliable approach to improving testability is through the use of
appropriate tools to aid in the development process. The following are some
tools to specifically address the risks for testability identified:

- Proof systems for verifying 2nd order assertions in generic instantiations
and assertions about task interactions, task state systems and other
program properties.

- Runtime monitors for deadlock and other deadness errors, storage
utilization parameters, and other runtime properties.

- Static program analysis for tasking interactions, storage utilization and
other program properties including adherence to the programming guidelines
listed above.

- Expert system support such as a "real -time assistant" for cyclic-based
system generation.

Having identified program efficiency as a risk to testability, in that
good features of the language will not be used if they are not sufficiently
efficient, several suggestions for appropriate compilation should be
considered. In general, a highly optimizing compiler, with efficient,
deterministic runtime support is a necessary goal. Particular attention should
be given to the following features:

- optimization of subtype range constraint checking,

- reduction of uncertainty in the raising of predefined exceptions,

- space efficient compilation with pragmas and representation clauses for
user control of storage utilization,

- optimization of tasking interactions with special support for tasking
paradigms through pragmas or pattern recognition, and

- efficient size and speed of generic instantiations with pragmas for user
specification of instantiation criteria.

B.1.5.6

(

Sumary

In summary, it was found that the language offered the potential to
greatly improve the testability of software, provided that certain guidelines
were followed. The language introduces features to deal with higher level
abstractions and the complexities of concurrent processing and dynamic storage
utilization. These features are considered necessary to deal with the
camplexities of the space station software requirements, but can decrease the
testability of that software. These risks to testability can be dealt with
through a combination of appropriate development practices and training,
appropriate tool support and appropriate compilation.

B.1.5.7

